login
A258369
Stirling-Bernoulli transform of A027656.
1
1, 1, 5, 25, 173, 1441, 14165, 160105, 2044733, 29105521, 456781925, 7834208185, 145760370893, 2923764916801, 62891469229685, 1444055265984265, 35250519098274653, 911569049328779281, 24893164161460525445, 715822742720760256345, 21620050147748210572013
OFFSET
0,3
COMMENTS
Also called Akiyama-Tanigawa transform of A027656.
FORMULA
a(n) = Sum_{k = 0..n} A163626(n,k)*A027656(k).
a(n) = Sum_{k>=0} A249163(n,k) * (k+1).
E.g.f.: 1/(exp(x)*(2 - exp(x))^2).
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
EXAMPLE
a(0) = 1*1 = 1.
a(1) = 1*1 = 1.
a(2) = 1*1 + 2*2 = 5.
a(3) = 1*1 + 12*2 = 25.
a(4) = 1*1 + 50*2 + 24*3 = 173.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, May 28 2015
STATUS
approved