This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258366 Numbers n representable as x*y + x + y, where x >= y > 1, such that all x's and y's in all representation(s) of n are perfect squares. 0
 24, 49, 84, 184, 288, 504, 628, 984, 1284, 1368, 1716, 2004, 2884, 3348, 3384, 3736, 4368, 6484, 6816, 7288, 8004, 9508, 9808, 10200, 11508, 14584, 14836, 15684, 19896, 21348, 21784, 22048, 25048, 25956, 27216, 27384, 35284, 38808, 40500, 40504, 44184, 47988, 49588, 50628 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A subsequence of A254671. Is 49 the only odd term? LINKS EXAMPLE 24 = 4*4 + 4 + 4. 49 = 9*4 + 9 + 4, and because this is the only representation, 49 is in the sequence. 129 = 4*25+25+4 = 12*9 + 12 + 9, and because 12 is not a square, 129 is not a term. PROG (Python) def isqrt(a):     sr = 1L << (long.bit_length(long(a)) >> 1)     while a < sr*sr:  sr>>=1     b = sr>>1     while b:       s = sr+b       if a >= s*s:  sr = s       b>>=1     return sr def isSquare(a):     sr = isqrt(a)     return (a==sr*sr) TOP = 100000 a = *TOP no= *TOP for y in xrange(2, TOP/2):   for x in xrange(y, TOP/2):     k = x*y + x + y     if k>=TOP: break     if no[k]==0:         a[k]=1         if not (isSquare(x) and isSquare(y)):             no[k]=1 print [n for n in xrange(TOP) if a[n]>0 and no[n]==0] CROSSREFS Cf. A254671, A256073, A000290. Sequence in context: A044101 A044482 A045294 * A195158 A045279 A042142 Adjacent sequences:  A258363 A258364 A258365 * A258367 A258368 A258369 KEYWORD nonn AUTHOR Alex Ratushnyak, May 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:11 EDT 2019. Contains 327311 sequences. (Running on oeis4.)