login
A258364
Sum over all partitions lambda of n into 9 distinct parts of Product_{i:lambda} prime(i).
2
223092870, 281291010, 641200560, 1103452350, 2195564910, 3564916950, 6783216270, 11130902406, 20071816324, 33727230365, 53845325737, 85802963866, 137813486551, 211362471237, 328671594863, 499826194085, 762249961621, 1134280917570, 1705626051462, 2476880995049
OFFSET
45,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 10), polynom)
end:
a:= n-> coeff(g(n$2), x, 9):
seq(a(n), n=45..70);
CROSSREFS
Column k=9 of A258323.
Cf. A000040.
Sequence in context: A348073 A115343 A374785 * A046327 A206044 A321147
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved