login
A258363
Sum over all partitions lambda of n into 8 distinct parts of Product_{i:lambda} prime(i).
2
9699690, 11741730, 27927900, 49533330, 98525490, 170218830, 325872714, 562212782, 1032566057, 1629661685, 2724030632, 4284584225, 6990871609, 10713813287, 17001782121, 25600766613, 39614085330, 58088625761, 87187552970, 126762441906, 186103726454, 266554756593
OFFSET
36,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 9), polynom)
end:
a:= n-> coeff(g(n$2), x, 8):
seq(a(n), n=36..60);
CROSSREFS
Column k=8 of A258323.
Cf. A000040.
Sequence in context: A147713 A348072 A123322 * A147575 A046326 A154573
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved