login
A258362
Sum over all partitions lambda of n into 7 distinct parts of Product_{i:lambda} prime(i).
2
510510, 570570, 1436820, 2655870, 5532330, 9757518, 19659886, 34710965, 58356321, 96541978, 161476211, 256683013, 419693431, 647984259, 1021626403, 1536889595, 2332063802, 3443800806, 5133970767, 7443724123, 10827942578, 15520714599, 22052126419, 30994058608
OFFSET
28,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 8), polynom)
end:
a:= n-> coeff(g(n$2), x, 7):
seq(a(n), n=28..60);
CROSSREFS
Column k=7 of A258323.
Cf. A000040.
Sequence in context: A230619 A176655 A123321 * A147574 A046325 A136352
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved