login
A258361
Sum over all partitions lambda of n into 6 distinct parts of Product_{i:lambda} prime(i).
2
30030, 39270, 90300, 177930, 381222, 722434, 1477619, 2309879, 4194446, 6846481, 11667593, 18212397, 30309561, 45149226, 70722044, 105790662, 160115543, 232478684, 346845682, 489561123, 709058342, 994019962, 1405076982, 1932862089, 2705315737, 3653574123
OFFSET
21,1
LINKS
MAPLE
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 7), polynom)
end:
a:= n-> coeff(g(n$2), x, 6):
seq(a(n), n=21..60);
CROSSREFS
Column k=6 of A258323.
Cf. A000040.
Sequence in context: A067885 A285615 A336671 * A072940 A147573 A046324
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2015
STATUS
approved