login
A258349
Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)/2).
10
1, 0, 1, 3, 7, 13, 28, 52, 107, 203, 396, 741, 1409, 2596, 4813, 8777, 15972, 28737, 51553, 91644, 162288, 285377, 499653, 869758, 1507615, 2599974, 4465606, 7635607, 13005252, 22061424, 37287395, 62788012, 105365891, 176211393, 293741195, 488101711, 808604106
OFFSET
0,4
LINKS
FORMULA
a(n) ~ 1 / (2^(155/96) * 15^(11/96) * Pi^(1/24) * n^(59/96)) * exp(-Zeta'(-1)/2 - Zeta(3) / (8*Pi^2) - 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 / (2^(7/4) * Pi^5) * n^(1/4) - sqrt(15/2) * Zeta(3) / Pi^2 * sqrt(n) + 2^(7/4)*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962).
G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 22 2018
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(n, 2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 27 2015
STATUS
approved