login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258322 Expansion of phi(-q) * phi(-q^9) in powers of q where phi() is a Ramanujan theta function. 3

%I

%S 1,-2,0,0,2,0,0,0,0,-4,4,0,0,-4,0,0,2,0,4,0,0,0,0,0,0,-6,0,0,0,0,0,0,

%T 0,0,4,0,4,-4,0,0,4,0,0,0,0,-8,0,0,0,-2,0,0,4,0,0,0,0,0,4,0,0,-4,0,0,

%U 2,0,0,0,0,0,0,0,4,-4,0,0,0,0,0,0,0,-4,4

%N Expansion of phi(-q) * phi(-q^9) in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A258322/b258322.txt">Table of n, a(n) for n = 0..2500</a>

%H M. Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q)^2 * eta(q^9)^2 / (eta(q^2) * eta(q^18)) in powers of q.

%F Euler transform of period 18 sequence [ -2, -1, -2, -1, -2, -1, -2, -1, -4, -1, -2, -1, -2, -1, -2, -1, -2, -2, ...]. - _Michael Somos_, May 26 2015

%F a(n) = -2*b(n) where b() is multiplicative with a(0) = 1, b(2^e) = -1 if e>0, b(3^e) = 1 + (-1)^e if e>0, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4).

%F a(n) = -2 * A257900(n) unless n = 0 or n == 2 (mod 3).

%F a(3*n + 1) = -2 * A258277(n). a(3*n + 2) = 0. a(9*n) = -4 * A113652(n). a(9*n + 3) = a(9*n + 6) = 0.

%e G.f. = 1 - 2*q + 2*q^4 - 4*q^9 + 4*q^10 - 4*q^13 + 2*q^16 + 4*q^18 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^9]^2 / (QPochhammer[ q^2] QPochhammer[ q^18]), {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^9 + A)^2 / (eta(x^2 + A) * eta(x^18 + A)), n))};

%o (PARI) {a(n) = my(A, p, e); if( n<1, n==0, if( n%3 == 2, 0, A = factor(n); -2 * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, -1, p%4==3, if(p==3, 2, 1)*(1-e%2), e+1))))};

%Y Cf. A113652, A257900, A258277.

%K sign

%O 0,2

%A _Michael Somos_, May 26 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)