OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(q)^2 * f(-q^6) / f(q, q^5) in powers of q where f(,) is Ramanujan's general theta function.
Expansion of eta(q^2)^4 * eta(q^6)^2 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, -3, 2, -2, 1, -4, 1, -2, 2, -3, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122865.
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k))^2 * (1 + x^(3*k)) / ((1 + x^(2*k)) * (1 + x^(6*k))).
EXAMPLE
G.f. = 1 + q - 2*q^2 + q^4 - 4*q^5 - 2*q^8 + 4*q^9 + 2*q^10 + 2*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^2 / (QPochhammer[ -q, q^6] QPochhammer[ -q^5, q^6]), {q, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma1(36), 1), 82); A[1] + A[2] - 2*A[3] + A[5] - 4*A[6] - 2*A[9] + 4*A[10] + 2*A[11] + 2*A[14] + A[17] - 4*A[18] + 4*A[19];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 23 2015
STATUS
approved