The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258144 Alternating row sums of A257241, Stifel's version of the arithmetical triangle. 3
 1, 2, 0, -2, 5, 11, -14, -34, 57, 127, -209, -461, 793, 1717, -3002, -6434, 11441, 24311, -43757, -92377, 167961, 352717, -646645, -1352077, 2496145, 5200301, -9657699, -20058299, 37442161, 77558761, -145422674, -300540194, 565722721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 FORMULA a(n) = Sum_{m = 1 .. ceiling(n/2)} (-1)^(m+1)* binomial(n, m), n >= 1. a(2*k+1) = (1 - (-1)^(k+1)*A001791(k)), k >= 0. a(2*k) =  (1 - (-1)^k*A001700(k-1)), k >= 1. O.g.f. for a(2*k+1), k >= 0: (2+3*x - (1-x)*(1+2*x)*c(-x))/((1+4*x)*(1-x)), with the o.g.f. c(x) of A000108 (Catalan). O.g.f. for a(2*(k+1)), k >= 0:   (3+2*x - (1-x)*c(-x))/((1+4*x)*(1-x)). O.g.f. for a(n), n >= 1: x*((1+x)*(2+x+2*x^2) - (1+x+2*x^2)*(1-x^2)*c(-x^2))/((1+4*x^2)*(1-x^2)). EXAMPLE n = 3: a(3) = (1 - A001791(1)) = 1 - 1 = 0. n = 4: a(4) = (1 - A001700(1)) = 1 - 3 = -2. PROG (Haskell) a258144 = sum . zipWith (*) (cycle [1, -1]) . a257241_row -- Reinhard Zumkeller, May 22 2015 CROSSREFS Cf. A257241, A001700, A001791, A258143, A000108. Cf. A033999. Sequence in context: A175631 A243816 A243159 * A113772 A033716 A115978 Adjacent sequences:  A258141 A258142 A258143 * A258145 A258146 A258147 KEYWORD sign,easy AUTHOR Wolfdieter Lang, May 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:25 EDT 2020. Contains 337975 sequences. (Running on oeis4.)