login
A258126
Smallest prime of the form Sum_{i=0..k} binomial(n,i), or a(n)=0 if there is no such a prime.
4
2, 3, 7, 5, 31, 7, 29, 37, 0, 11, 67, 13, 1093, 1471, 9949, 17, 131071, 19, 191, 211, 7547, 23, 277, 190051, 1807781, 61450327, 379, 29, 0, 31, 36457, 1149017, 0, 0, 631, 37, 0, 0, 0, 41, 0, 43, 947, 991, 0, 47, 1129, 8682997471, 0, 1125899906842573, 1327, 53
OFFSET
1,1
COMMENTS
a(n)=0 for n=9,29,33,34,37,38,39,41,45,49,...;
records a(n) are on the positions: 1,2,3,5,8,11,13,14,15,17,24,25,26,48,50,...
Mersenne primes a(n) = 2^n-1 are at positions 2,3,5,17,...
LINKS
FORMULA
a(n) <= 2^n-1.
PROG
(PARI) a(n) = {my(k = 0); while(! isprime(p=sum(i=0, k, binomial(n, i))), k++; if ((k>n) && !isprime(binomial(n, k)), return (0); )); p; } \\ Michel Marcus, May 23 2015
CROSSREFS
Sequence in context: A275115 A085399 A063696 * A332211 A353075 A069587
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 21 2015
EXTENSIONS
More terms from Peter J. C. Moses, May 21 2015
STATUS
approved