This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258116 The Heinz numbers in increasing order of the partitions into distinct odd parts. 4
 1, 2, 5, 10, 11, 17, 22, 23, 31, 34, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 94, 97, 103, 109, 110, 115, 118, 127, 134, 137, 146, 149, 155, 157, 166, 167, 170, 179, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230, 233, 235, 241, 253, 254, 257, 269, 274, 277, 283, 295, 298, 307, 310, 313, 314, 331, 334, 335, 341, 347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, the Heinz number of the partition [1, 1, 2, 4, 10] is 2*2*3*7*29 = 2436. In the Maple program the subprogram B yields the partition with Heinz number n. More terms are obtained if one replaces the 350 in the Maple program by a larger number. REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976. G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 EXAMPLE 170 is in the sequence because it is the Heinz number of the partition [1,3,7]; indeed, (1st prime)*(3rd prime)*(7th prime) = 2*5*17 = 170. MAPLE with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DO := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), odd) = {true}) then DO := `union`(DO, {q}) else  end if end do: DO; # second Maple program: a:= proc(n) option remember; local k;       for k from 1+`if`(n=1, 0, a(n-1)) do         if not false in map(i-> i=1 and numtheory         [pi](i)::odd, ifactors(k)) then break fi       od; k     end: seq(a(n), n=1..100);  # Alois P. Heinz, May 10 2016 MATHEMATICA a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n-1]], True, k++, If[AllTrue[FactorInteger[k], #[] == 1 && OddQ[PrimePi[#[]]]&], Break[]]]; k]; Join[{1}, Array[a, 100]] (* Jean-François Alcover, Dec 10 2016 after Alois P. Heinz *) CROSSREFS Cf. A215366, A258117. Sequence in context: A257031 A167799 A179871 * A324812 A032874 A240032 Adjacent sequences:  A258113 A258114 A258115 * A258117 A258118 A258119 KEYWORD nonn AUTHOR Emeric Deutsch, May 20 2015 EXTENSIONS a(1)=1 inserted by Alois P. Heinz, May 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 16:41 EDT 2019. Contains 327311 sequences. (Running on oeis4.)