OFFSET
0,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (psi(q) * f(-q^9)^3) / (chi(-q^3)^2 * psi(q^3)^4) in powers of q where psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^2 * eta(q^3)^2 * eta(q^9)^3 / (eta(q) * eta(q^6)^6) in powers of q.
Euler transform of period 18 sequence [ 1, -1, -1, -1, 1, 3, 1, -1, -4, -1, 1, 3, 1, -1, -1, -1, 1, 0, ...].
Convolution invserse is A182034.
EXAMPLE
G.f. = 1 + q - q^3 - 2*q^4 + 4*q^6 + 5*q^7 - 10*q^9 - 12*q^10 + 20*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q^9]^3 EllipticTheta[ 2, 0, q^(1/2)] QPochhammer[ q^3]^2 / (2 q^(1/8) QPochhammer[ q^6]^6), {q, 0, n}];
a[ n_] := SeriesCoefficient[ 4 q QPochhammer[ q^9]^3 EllipticTheta[ 2, 0, q^(1/2)] / (QPochhammer[ q^3] EllipticTheta[ 2, 0, q^(3/2)]^3), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^9 + A)^3 / (eta(x + A) * eta(x^6 + A)^6), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2015
STATUS
approved