login
A257999
Numbers of the form, 2^i*3^j, i+j odd.
3
2, 3, 8, 12, 18, 27, 32, 48, 72, 108, 128, 162, 192, 243, 288, 432, 512, 648, 768, 972, 1152, 1458, 1728, 2048, 2187, 2592, 3072, 3888, 4608, 5832, 6912, 8192, 8748, 10368, 12288, 13122, 15552, 18432, 19683, 23328, 27648, 32768, 34992, 41472, 49152, 52488
OFFSET
1,1
LINKS
FORMULA
A069352(a(n)) mod 2 = 1.
Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Feb 18 2021
MATHEMATICA
max = 53000; Reap[Do[k = 2^i*3^j; If[k <= max && OddQ[i + j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 after Jean-François Alcover at A036667 *)
PROG
(Haskell)
a257999 n = a257999_list !! (n-1)
a257999_list = filter (odd . flip mod 2 . a001222) a003586_list
CROSSREFS
Complement of A036667 with respect to A003586.
Intersection of A026424 and A003586.
Sequence in context: A266629 A249096 A249367 * A350440 A115449 A303851
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 16 2015
STATUS
approved