login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The crank of the partition having Heinz number n.
10

%I #27 Apr 05 2021 21:07:39

%S -1,2,-2,3,0,4,-3,2,0,5,-2,6,0,3,-4,7,1,8,-1,4,0,9,-3,3,0,2,-1,10,1,

%T 11,-5,5,0,4,-2,12,0,6,-3,13,1,14,-1,3,0,15,-4,4,1,7,-1,16,2,5,-2,8,0,

%U 17,-1,18,0,4,-6,6,1,19,-1,9,1,20,-3,21,0,3,-1,5,1,22,-4,2,0,23,-1,7,0,10,-2,24,2,6,-1

%N The crank of the partition having Heinz number n.

%C The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's).

%C We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.

%C In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n.

%H Alois P. Heinz, <a href="/A257989/b257989.txt">Table of n, a(n) for n = 2..10000</a>

%H G. E. Andrews and F. Garvan, <a href="http://dx.doi.org/10.1090/S0273-0979-1988-15637-6">Dyson's crank of a partition</a>, Bull. Amer. Math. Soc., 18 (1988), 167-171.

%H B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, <a href="http://dx.doi.org/10.1016/j.jcta.2004.06.013">Cranks and dissections in Ramanujan's lost notebook</a>, J. Comb. Theory, Ser. A, 109, 2005, 91-120.

%H B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, <a href="http://www.math.uiuc.edu/~berndt/articles/finalproblem.pdf">Cranks - really the final problem</a>, Ramanujan J., 23, 2010, 3-15.

%H G. E. Andrews, K. Ono, <a href="http://dx.doi.org/10.1073/pnas.0507844102">Ramanujan's congruences and Dyson's crank</a>, Proc. Natl. Acad. Sci. USA, 102, 2005, 15277.

%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000474/">Dyson's crank of a partition.</a>

%H K. Mahlburg, <a href="http://dx.doi.org/10.1073/pnas.0506702102">Partition congruences and the Andrews-Garvan-Dyson crank</a>, Proc. Natl. Acad. Sci. USA, 102, 2005, 15373-15376.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Crank_of_a_partition">Crank of a partition</a>

%e a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2.

%e a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4.

%e From _Gus Wiseman_, Apr 05 2021: (Start)

%e The partitions (center) with each Heinz number (left), and the corresponding terms (right):

%e 2: (1) -> -1

%e 3: (2) -> 2

%e 4: (1,1) -> -2

%e 5: (3) -> 3

%e 6: (2,1) -> 0

%e 7: (4) -> 4

%e 8: (1,1,1) -> -3

%e 9: (2,2) -> 2

%e 10: (3,1) -> 0

%e 11: (5) -> 5

%e 12: (2,1,1) -> -2

%e 13: (6) -> 6

%e 14: (4,1) -> 0

%e 15: (3,2) -> 3

%e 16: (1,1,1,1) -> -4

%e (End)

%p with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150);

%t B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];

%t b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]];

%t c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct];

%t a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]];

%t Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Apr 25 2017, after _Emeric Deutsch_ *)

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];

%t Table[ck[primeMS[n]],{n,2,30}] (* _Gus Wiseman_, Apr 05 2021 *)

%Y Cf. A215366, A257988.

%Y Indices of zeros are A342192.

%Y A001522 counts partitions of crank 0.

%Y A003242 counts anti-run compositions.

%Y A064391 counts partitions by crank.

%Y A064428 counts partitions of nonnegative crank.

%Y Cf. A000005, A000726, A056239, A112798, A124010, A224958, A325351, A325352.

%K sign

%O 2,2

%A _Emeric Deutsch_, May 18 2015