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January 29. 1974 : [

Mr. Fred Gruenberger
5000 Beckley Avenue -
Woodland Hills. California S913LY

Dear Fred:

You will recall that I mentioned at the time of the December 1
meeting that I was working on your Checkerboard problem {PC 7.
Problem 15}. Recently I have had some time to finish the
programmlng and make a few runsa. and I thought it might be
approprlate to report te you the current results. . .

I have extended your table on the second page of PC 7 as
follows: :

N C{ND}

[ 1

t 37 = 7
: w2

30 44,240

My present best guess for ({12} = 7.75 x 10b.  yYou will observe-
I'm sure. that these values are somewhat at variance with the
‘guesses you made in the article! The process is of a slightly
higher order exponential character than you suspected. It is
doubtful+ at this timea whether I will be able to run my present
program for N = 12+ because I estimate that it would consume
approximately three hours of LLOO CPU time. {If the process
were vectorizable. and I suspect that it is. and I had the time
to write the program. perhaps STAR could do the N = 12 case in
five to ten minutes. Howevera even STAR would be hard pressed
to run the N = 1Y case which would take * 350 times as long!
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It might be well. first. to show some comparison numbers to
support the seemingly large values for C{N}. e observe that
each shape which cuts the square checkerboard into four
congruent pieces is a polyomino of order N2. Therefore. we
might suspect that the number C{N} would be less than the
corresponding number of polyominoes of the corresponding
number of squares. since. of course.: there are poloyominoes
of any given size {:4} which cannot be used to divide the
square array into four congruent pieces. i.e.s the 1 x 1lb
shape. - Let's look at a comparative table:

n 1 2 .3 y | 5 b
N=En 2y b B 10 12
NE 4 1k 3b by 100 - 14y
NEsqsm L 4 q T 25 3L
PIN} .1 5 1285 -13079255 & 2.03x1002 - 5x3,0L8
} 5 37 282 - uyy2yg ~ 7.75x10P

C{N}
Thus we see thata in general. C{N} << P{Na}-

On the other hand. one might argue that even though all the
- PIN®} cannot be used. one.or more might be used several times}

for example. the ' piece for N=Y can be used two different

ways to yield two countably distinct divisions of the board into
four congruent pieces. <{Incidentally. if I were setting the rules,
I would exclude this case since the stated problem is "to cut '
the square checkerboard into four congruent pieces™. and once
these pieces have been cuta I maintain their origin is no longer
germanes however. this is not a problem except when {l = 0 mod U
and it can be argued that the emphasis is on 'cut'a and not the
shape of the cut piece- so I won't gress the point.} Even so-

an examination of the counts of P{NZ} by symmetry type also
‘shows that pieces possessing both 90° rotational ‘symmetry at one
point and 180° symmetry at another are vanishingly fewa thus

the conclusion. C{N} << P{NC} seems valid.
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There are a few observations about the problem which are
necessary before one can understand the algorithm which I used
for counting the possible cases. First of all. it is necessary
to adopt a systematic procedure for enumerating the shapess and-
as a precursor to development of that systematic procedure. it
is necessary to adopt some taxonometric scheme for classifying
the shapes. Note that there are two classes of cuts which will
divide the checkerboard into congruent pieces. and these may be
classified as those which cut the square array into four pieces
such that the edges of the pieces are 90° rotationally symmetric
within the square. and the remaining cases where the square is
divided into two rectangles by a line through the center-
bisecting two sides. and then the rectangle is divided into two
congruent pieces by a line which is 180° rotationally symmetric.
Next. note that the pieces may be displayed either obverse or
reverse. i.e.. mirror imagesa or they may all be oriented in
some canonical fashion.

In my experience with writing programs to deal with two. .
‘dimensional shapess I have found that coding the shapes is

quite tricky and difficult to work with3 howevera dealing with
the edges of shapes is sometimes simpler. Thusa in this problem
I chose to consider the square array of 2N x 2i squares in the
plane to be a {2N+1} x {2N+1} square array of lattice points

in the plane and trace paths corresponding to the edges of the
shapes of interest.

The interior edges of the.various pieces then provide for a
taxonomy and allow a systematic procedure for generating shapes.
Note that every piece in the square case involves an edge which
traces a path from the outer perimeter of the square lattice

to the center point. Furthermore. this path originates. saya

along the upper left border of the square down to the center

line- and from no other place. 4{This is the canonical orientation-.}
It is these unique paths which connect the border with the center
which we enumerate {in the square casel} and similarly. with

suitable restrictionsa. for the rectangular case.

Figure 1. attached. shows the*{EN+L}'x.{EN¥l} lattice.

We note. of course. that the origin of the paths in the square
case ranges over only one-eighth of the border  {because of
rotation and reflection symmetry}. and over only one quarter

of the border in the rectangular case. These ranges are marked

on Figure L. Some special situations are also noted on Figure 1.
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Now~ of course~ the algorithm is simple. Start at each
appropriate border point and trace all possible unique paths
to the appropriate center. I realize that this statement is
descriptive but hardly constructive. so I will further detail

the process.

l.

F

Start at a corner. proceed down one side {or across the topl}s
and select the next point which has not been used as a
starting point. Stop after using the center line point

{or less than or equal to one-guarter of the top}. After
selecting the border pointa mark all other border points

as "disallowed™. Enter the border point in a list at

Level 1- ‘

Select the next lattice point inside the array. i.e«s toward
the center. and enter this point at Level 2. Note that
there is only one possible choice for the second point on 2
patha given the first point on the border-

Mark the four {or twol syﬁMetrical pbints to the last

selected point as "disallowed". {The purpose of this
disallowance is to preclude any point from appearing on
more than one path. an obvious impossibility. thus. as each
point on a path is selected. we simply check off the
corresponding symmetrical points which are then no longer
available for extensions of the current path.}

Add to the list. at the current. level. the coordinates of
the D. 12 2- or 3 possible points which could possibly be
the extension of this path and mark them "unselected”.

Note that of the four points surrounding a given point. one
of them is where the path came from. so that there are. at

‘most. three possible extéensions. Furthermores 1t is possible

to trace a path into a cul-de-sac such that no further:
extension of that path is possible and the path has not’
arrived at the center, hence the U possibility.

If there are further eligible selections at this levela
select the next unselected eligible extension point on this
path at this levels mark it "selected". and enter it at the
next level. If there are no further selections at this
levela remove the "disallowed" exclusions for the selected
points and the selected point. at this level. Back up one
level. If Level 1 has been reached. all done this border
point3 if not. repeat this Step 5.
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L. Match the selected poiht against the end point {or pointsl}
to see if this path is finished. If not. recursively
repeat Steps 3+ 4.1 5+ and b until the path terminates or
an exit at Step 5 occurs-.

?. Tally the terminated path {and note its coordinates- if
you have time!l}

8. Backtrack one level and repeat at Step 5.

Using this algorithm. suitably modified in implementation to
cover both the square and the rectangular cases, and againa
suitably modified for the evenness or oddness of Na yields the
table of results. Table 1 attached. As a demonstration of the
paths which are generateds several examples are drawn on the
other sheets attached.

“You are free to use. abstracta edit. or rewrite any of “this

letter as you pleases or not. and I only request that you

ascribe to me and Control Data Corporation if you use any:
] e

Kindest personal regards to yous Audny- and John.

CONTROL DATA CORPORATION

Thomas R. Parkin
Vice President

TRP/m-
Attachments
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SQUARE = A- Range for origin of paths to center {NaN}: I = 1 to Na J

A RECTANGLE : A- Range for origin of paths to center'{%‘ﬂ}

n

l to Na J =
0 J = 1 to

= o

I
and B- I

Note that when N = 1 {mod 2}. there are two pseudo centers for
the rectangular case. Further. there is a potential duplicate
rectangular path from {4.0} to {4.2} which would duplicate the
square path from {4,0} to {4.4}. This is eliminated by a special
test. Further. there are potential mirror image paths in both
cases when starting on the center lines and these are prevented

by requiring a turn in one. direction on the path prior to allowing
a turn in the other direction.

Figure 1
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CIad )
N N {Squarel} {Rect?}
2 oy 140 2 1.0
2.0 1 0.1
3 b 1.0 12 1.0
E1ﬂ' "] E-.l:l
3.0 5 i)
y 8 L.Okx 212 1.0
2.0 167 2.0
3.0 146 3.0
4,0 a7 T
0.1
0.2x%
5 10 1.0 11030 1.0 1
2.0  &774 240 |
3.0 7538 3.0
4.0 7229 4,0
5.0  ysp2 5.0
041 1
0.2
b 12 320 <1.8x108> :
: 0.1 <1.25x10%>
ka0 <bx10% :
| | 0.3 ° <sx10%

<estimated>
x illustrated on following pages

x* first and last examples shown on attached pages

Table 1
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