login
Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 3^(n-1)*(2*k - 1))/2, n,k >= 1.
1

%I #11 Jun 10 2015 06:42:38

%S 1,2,2,5,5,3,14,14,8,4,41,41,23,11,5,122,122,68,32,14,6,365,365,203,

%T 95,41,17,7,1094,1094,608,284,122,50,20,8,3281,3281,1823,851,365,149,

%U 59,23,9,9842,9842,5468,2552,1094,446,176,68,26,10

%N Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 3^(n-1)*(2*k - 1))/2, n,k >= 1.

%e Array A begins:

%e . 1 2 3 4 5 6 7 8 9 10

%e . 2 5 8 11 14 17 20 23 26 29

%e . 5 14 23 32 41 50 59 68 77 86

%e . 14 41 68 95 122 149 176 203 230 257

%e . 41 122 203 284 365 446 527 608 689 770

%e . 122 365 608 851 1094 1337 1580 1823 2066 2309

%e . 365 1094 1823 2552 3281 4010 4739 5468 6197 6926

%e . 1094 3281 5468 7655 9842 12029 14216 16403 18590 20777

%e . 3281 9842 16403 22964 29525 36086 42647 49208 55769 62330

%e . 9842 29525 49208 68891 88574 108257 127940 147623 167306 186989

%t (* Array: *)

%t Grid[Table[(1 + 3^(n - 1)*(2*k - 1))/2, {n, 10}, {k, 10}]]

%t (* Array antidiagonals flattened: *)

%t Flatten[Table[(1 + 3^(n - k)*(2*k - 1))/2, {n, 10}, {k, n}]]

%Y Cf. A191450, A254051.

%K nonn,tabl

%O 1,2

%A _L. Edson Jeffery_, May 13 2015