login
Decimal expansion of 11/18.
0

%I #29 Aug 05 2024 10:11:28

%S 6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Decimal expansion of 11/18.

%C Decimal expansion of Sum_{i>=1} 1/A028552(i).

%C Also, continued fraction expansion of 5+A001622.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F Equals A020773 + A142464.

%F From _Elmo R. Oliveira_, Aug 05 2024: (Start)

%F G.f.: (6-5*x)/(1-x).

%F E.g.f.: exp(x) + 5.

%F a(n) = 1, n >= 1. (End)

%e .6111111111111111111111111111111111111111111111111111111111111111...

%t RealDigits[11/18, 10, 90][[1]]

%o (Magma) [6,1^^90];

%o (PARI) 11/18. \\ _Charles R Greathouse IV_, Apr 18 2016

%Y Cf. A028552, A030880.

%Y Cf. A010716 (decimal expansion of 5/9 = 10/18), A010722 (decimal expansion of 2/3 = 12/18).

%K nonn,cons,easy

%O 0,1

%A _Bruno Berselli_, May 13 2015