login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257932 Expansion of 1/(1-x-x^2-x^3+x^5+x^7). 1
1, 1, 2, 4, 7, 12, 22, 38, 67, 118, 207, 363, 638, 1119, 1964, 3447, 6049, 10615, 18629, 32691, 57369, 100676, 176674, 310041, 544085, 954802, 1675561, 2940405, 5160051, 9055258, 15890871, 27886534, 48937456, 85879249, 150707576, 264473359, 464118392, 814471000, 1429296968 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence counts partially ordered partitions of (n) into parts (1,2,3,4) where the position (order) of 3's is unimportant.

LINKS

Robert Israel, Table of n, a(n) for n = 0..4090

Index entries for related partition-counting sequences

Index entries for linear recurrences with constant coefficients, signature (1,1,1,0,-1,0,-1)

FORMULA

a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-5) - a(n-7).

G.f.: 1 / ((x-1)*(x+1)*(x^2+x+1)*(x^3-x^2+2*x-1)). - Colin Barker, May 17 2015

EXAMPLE

a(6)=22; these are (42),(24),(411),(141),(114),(33),(321=231=213),(312=132=123),(3111=1311=1131=1113),(222),(2211),(1122),(1221),(2112),(2121),(1212),(21111),(12111),(11211),(11121),(11112),(111111).

MAPLE

f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-5) - a(n-7), seq(a(i)=[1, 1, 2, 4, 7, 12, 22][i+1], i=0..6)}, a(n), remember):

map(f, [$0..50]); # Robert Israel, Apr 26 2017

PROG

(PARI) Vec(1/((x-1)*(x+1)*(x^2+x+1)*(x^3-x^2+2*x-1)) + O(x^100)) \\ Colin Barker, May 17 2015

CROSSREFS

Sequence in context: A309733 A289107 A221944 * A287439 A026713 A288996

Adjacent sequences:  A257929 A257930 A257931 * A257933 A257934 A257935

KEYWORD

nonn,easy

AUTHOR

David Neil McGrath, May 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 04:52 EDT 2020. Contains 335673 sequences. (Running on oeis4.)