login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257917 a(n) is the largest y that is a member of a pair (x, y) of integers with x - y > 1 such that x^2 - y^2 is equal to the Fermat number 2^(2^n) + 1, or 0 if no such number exists. 2
0, 0, 0, 0, 0, 3349888, 33640210518272, 2852314775548000778752, 46730819857678988884581779099803448292025618770199631109363712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

2^(2^n) + 1 belongs to A019434 if and only if a(n) = 0.

REFERENCES

M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, p. 6.

LINKS

Table of n, a(n) for n=0..8.

Wikipedia, Fermat number

FORMULA

If 2^(2^n) + 1 is composite, then a(n) = A257916(n) - A093179(n).

PROG

(PARI) a(n) = {my(fn = 2^(2^n) + 1); if (isprime(fn), return(0)); my(spf = factor(fn)[1, 1]); (fn/spf - spf)/2; } \\ Michel Marcus, Jun 07 2015

CROSSREFS

Cf. A000215, A257916.

Sequence in context: A238153 A083635 A116306 * A257916 A015408 A036472

Adjacent sequences:  A257914 A257915 A257916 * A257918 A257919 A257920

KEYWORD

nonn

AUTHOR

Arkadiusz Wesolowski, May 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 27 20:09 EDT 2017. Contains 289866 sequences.