

A257916


a(n) is the largest x that is a member of a pair (x, y) of integers with x  y > 1 such that x^2  y^2 is equal to the Fermat number 2^(2^n) + 1, or 0 if no such number exists.


2




OFFSET

0,6


COMMENTS

2^(2^n) + 1 belongs to A019434 if and only if a(n) = 0.


REFERENCES

M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, SpringerVerlag, New York, 2001, p. 6.


LINKS

Table of n, a(n) for n=0..8.
Wikipedia, Fermat number


FORMULA

If F(n) = 2^(2^n) + 1 is composite, then a(n) = (A032742(F(n)) + A093179(n))/2.


PROG

(PARI) a(n) = {my(fn = 2^(2^n) + 1); if (isprime(fn), return (0)); my(spf = factor(fn)[1, 1]); (fn/spf + spf)/2; } \\ Michel Marcus, Jun 07 2015


CROSSREFS

Cf. A000215, A257917.
Sequence in context: A083635 A116306 A257917 * A015408 A036472 A206168
Adjacent sequences: A257913 A257914 A257915 * A257917 A257918 A257919


KEYWORD

nonn


AUTHOR

Arkadiusz Wesolowski, May 12 2015


STATUS

approved



