login
Pandigital numbers reordered so that the numbers A050278(n)/(2^k*3^m), where 2^k||A050278(n) and 3^m||A050278(n), appear in nondecreasing order.
1

%I #10 Jun 06 2015 11:52:26

%S 2845310976,1379524608,1745960832,6398410752,3076521984,5892341760,

%T 2305179648,3718250496,1578369024,9145036728,5392687104,1356709824,

%U 1607952384,3215904768,1485029376,5638470912,5619843072,6185973240,5234098176,7246198035,1072963584

%N Pandigital numbers reordered so that the numbers A050278(n)/(2^k*3^m), where 2^k||A050278(n) and 3^m||A050278(n), appear in nondecreasing order.

%C If two such numbers A050278(n_1)/(2^k_1*3^m_1) and A050278(n_2)/(2^k_2*3^m_2) are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(2)/(2^13*3^7)=a(3)/(2^7*3^11)= 77. There are 210189 such pairs.

%C Note that, a(1) = 2845310976 means that min(A050278(n)/(2^k*3^m)) = 2845310976/(2^19*3^4) = 67.

%Y Cf. A050278, A257893, A257899, A257901, A257914, A065330.

%K nonn,base,fini

%O 1,1

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, May 12 2015