login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257903 Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 3. 3
0, 1, 3, 2, 6, 4, 9, 5, 11, 8, 15, 7, 16, 10, 18, 13, 23, 12, 24, 14, 25, 38, 17, 31, 19, 34, 20, 36, 21, 39, 22, 41, 28, 45, 26, 46, 30, 51, 27, 49, 29, 52, 43, 67, 32, 57, 35, 61, 33, 60, 37, 65, 40, 69, 42, 72, 54, 47, 78, 44, 76, 50, 83, 53, 87, 48, 84 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Algorithm:  For k >= 1, let  A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}.  Begin with k = 1 and nonnegative integers a(1) and d(1).  Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k).  Let a(k+1) = a(k) + h and d(k+1) = h.  Replace k by k+1 and repeat inductively.

Conjecture:  if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0).  Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.

See A257883 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

a(k+1) - a(k) = d(k+1) for k >= 1.

EXAMPLE

a(1) = 0, d(1) = 3;

a(2) = 1, d(2) = 1;

a(3) = 3, d(3) = 2;

a(4) = 2, d(4) = -1.

MATHEMATICA

a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120;

A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];

c[k_] := Complement[Range[-z, z], diff[k]];

T[k_] := -a[k] + Complement[Range[z], A[k]]

Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,

   d[k + 1] = h, k = k + 1}, {i, 1, zz}];

u = Table[a[k], {k, 1, zz}]  (* A257903 *)

Table[d[k], {k, 1, zz}]      (* A257904 *)

CROSSREFS

Cf. A257904, A257883, A257705.

Sequence in context: A321508 A245261 A054089 * A257877 A257910 A006368

Adjacent sequences:  A257900 A257901 A257902 * A257904 A257905 A257906

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 02:24 EDT 2020. Contains 335503 sequences. (Running on oeis4.)