login
A257901
Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order.
3
1304296875, 1342968750, 1437890625, 1824609375, 9123046875, 1923046875, 3104296875, 3142968750, 3649218750, 4137890625, 4862109375, 1034296875, 1269843750, 6349218750, 1284609375, 1293046875, 1347890625, 1432968750, 8124609375, 1629843750, 8462109375
OFFSET
1,1
COMMENTS
If two such numbers A050278(n_1)/5^k_1 and A050278(n_2)/5^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/5^8=a(5)/5^9=4671.
There are 46080 such pairs.
FORMULA
min(A050278(n)/5^k) = 1304296875/5^8 = 3339.
PROG
(Python)
from itertools import permutations
l = []
for d in permutations('0123456789', 10):
....if d[0] != '0':
........d2 = int(''.join(d))
........d = d2
........r = d2 % 5
........while not r:
............d2, r = divmod(d2, 5)
........l.append((d2, d))
l.sort()
A257901_list = [b for a, b in l] # Chai Wah Wu, May 24 2015
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
STATUS
approved