login
A257899
Pandigital numbers reordered so that the numbers A050278(n)/3^k, where 3^k||A050278(n), are in nondecreasing order.
4
7246198035, 3410256897, 5361708249, 5902183746, 6820513794, 8145396207, 8269753401, 9145036728, 9537240186, 1257389406, 1359426078, 4379605281, 1742063598, 6185973240, 2081654397, 2095471863, 6472951380, 2170936485, 2304859617, 2415930786, 2419650873
OFFSET
1,1
COMMENTS
If two such numbers A050278(n_1)/3^k_1 and A050278(n_2)/3^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2).
There are 5985 such pairs.
FORMULA
min(A050278(n)/3^k) = 7246198035/3^15 = 505
PROG
(Python)
from itertools import permutations
l = []
for d in permutations('0123456789', 10):
....if d[0] != '0':
........d2 = int(''.join(d))
........d = d2
........r = d2 % 3
........while not r:
............d2, r = divmod(d2, 3)
........l.append((d2, d))
l.sort()
A257899_list = [b for a, b in l] # Chai Wah Wu, May 24 2015
CROSSREFS
Sequence in context: A095926 A198784 A104944 * A199632 A104851 A226950
KEYWORD
nonn,base,fini
AUTHOR
STATUS
approved