login
A257870
Decimal expansion of the Madelung type constant C(1|1/4) (negated).
3
1, 0, 5, 8, 9, 3, 5, 1, 5, 5, 3, 3, 1, 3, 1, 5, 2, 0, 7, 6, 1, 3, 7, 2, 2, 1, 0, 6, 0, 8, 5, 3, 5, 1, 4, 5, 4, 4, 6, 5, 2, 7, 0, 6, 6, 5, 5, 0, 2, 9, 7, 5, 8, 9, 8, 9, 7, 6, 7, 6, 5, 1, 8, 8, 7, 4, 2, 5, 9, 0, 3, 1, 1, 5, 8, 9, 9, 0, 2, 2, 3, 3, 8, 3, 2, 1, 0, 5, 7, 1, 8, 2, 7, 9, 6, 7, 6, 7, 0, 7, 2, 6, 5, 7, 3
OFFSET
2,3
LINKS
Hassan Chamati and Nicholay S. Tonchev, Exact results for some Madelung type constants in the finite-size scaling theory, arXiv:cond-mat/0003235 [cond-mat.stat-mech] (2000).
Eric Weisstein's World of Mathematics, Madelung Constants.
FORMULA
2*gamma(1/4)*zeta(1/2).
EXAMPLE
-10.58935155331315207613722106085351454465270665502975898976765...
MAPLE
evalf(2*GAMMA(1/4)*Zeta(1/2), 120); # Vaclav Kotesovec, May 11 2015
MATHEMATICA
RealDigits[2*Gamma[1/4]*Zeta[1/2], 10, 105] // First
PROG
(PARI) -2*gamma(1/4)*zeta(1/2) \\ Charles R Greathouse IV, May 11 2015
CROSSREFS
Sequence in context: A241992 A263176 A197815 * A338275 A356031 A336003
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved