OFFSET
0,3
COMMENTS
The array used here starts in row n=0 with the first partial sums of A000045. The array which starts with the Fibonacci numbers in row k=0 is shown in A136431. The diagonal of that array is given in A176085. - Wolfdieter Lang, Jun 03 2015
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = F^{n+1}(n), n >= 0, with the k-th iterated partial sum F^{k} of the Fibonacci number A000045. - Wolfdieter Lang, Jun 03 2015
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+13*n-6)*a(n-1) +(15*n^2-53*n+48)*a(n-2) +2*(2*n-3)*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 10 2015
G.f.: -(4*x+sqrt(1-4*x)-1)/(8*x^2+sqrt(1-4*x)*(8*x-2)-2*x). - Vladimir Kruchinin, Oct 09 2016
a(n) = Sum_{k=0..n} binomial(2*n-k,n-k)*F(k), where F(k) = A000045(k). - Vladimir Kruchinin, Oct 09 2016
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 09 2016
EXAMPLE
This sequence is the main diagonal of the following array (see the comment and Example field of A136431):
0, 1, 2, 4, 7, 12, ... A000071
0, 1, 3, 7, 14, 26, ... A001924
0, 1, 4, 11, 25, 51, ... A014162
0, 1, 5, 16, 41, 92, ... A014166
0, 1, 6, 22, 63, 155, ... A053739
0, 1, 7, 29, 92, 247, ... A053295
MATHEMATICA
Table[DifferenceRoot[Function[{a, n}, {(2*n + 4*n^2)*a[n] + (2 + 7*n + 15*n^2)*a[1 + n] + (8 - 6*n - 8*n^2)*a[2 + n] + (-2 + n + n^2)*a[3 + n] == 0, a[1] == 0, a[2] == 1, a[3] == 4, a[4] == 16}]][n], {n, 30}]
PROG
(Maxima)
a(n):=sum(binomial(2*n-k, n-k)*fib(k), k, 0, n); /* Vladimir Kruchinin, Oct 09 2016 */
(PARI) x='x+O('x^50); concat([0], Vec(-(4*x+sqrt(1-4*x)-1)/(8*x^2+sqrt(1-4*x)*(8*x-2)-2*x))) \\ G. C. Greubel, Apr 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, May 10 2015
EXTENSIONS
Name edited by Wolfdieter Lang, Jun 03 2015
STATUS
approved