login
A257828
Positive integers whose square is the sum of 97 consecutive squares.
11
679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831, 10253011689091642135, 24386783991798773338556, 58003955471481693294113311, 1287975802673112210113634031, 3063449905150311732357259611836, 7286414311424213782299531873117895
OFFSET
1,1
COMMENTS
Positive integers x in the solutions to 2*x^2-194*y^2-18624*y-599072 = 0.
FORMULA
a(n) = 125619266*a(n-3)-a(n-6).
G.f.: -679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1).
EXAMPLE
679 is in the sequence because 679^2 = 461041 = 15^2+16^2+...+111^2.
MATHEMATICA
LinearRecurrence[{0, 0, 125619266, 0, 0, -1}, {679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831}, 30] (* Vincenzo Librandi, May 11 2015 *)
Rest[CoefficientList[Series[-679x(x-1)(x^4+2277x^3+5415742x^2+ 2277x+1)/ (x^6-125619266x^3+1), {x, 0, 15}], x]] (* Harvey P. Dale, Aug 02 2021 *)
PROG
(PARI) Vec(-679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1) + O(x^100))
(Magma) I:=[679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831]; [n le 6 select I[n] else 125619266*Self(n-3)-Self(n-6): n in [1..20]]; // Vincenzo Librandi, May 11 2015
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 10 2015
STATUS
approved