login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257813 G.f. satisfies: A(x,y) = 1-x + y*x + Series_Reversion( x/A(x,y)^2 ). 0
1, 0, 1, 0, 2, 0, 0, 4, 5, 0, 0, 8, 38, 14, 0, 0, 16, 184, 262, 42, 0, 0, 32, 720, 2460, 1602, 132, 0, 0, 64, 2480, 16360, 25837, 9260, 429, 0, 0, 128, 7840, 87920, 268134, 237870, 52040, 1430, 0, 0, 256, 23296, 408128, 2109040, 3638386, 2023992, 288494, 4862, 0, 0, 512, 66048, 1701504, 13676128, 40049492, 43815744, 16394336, 1590638, 16796, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The right-most nonzero numbers in this triangle form the Catalan numbers (A000108).

LINKS

Table of n, a(n) for n=0..65.

FORMULA

G.f. A(x,y) satisfies: A(x/A(x,y)^2, y) = 1+x + (y-1)*x/A(x,y)^2.

EXAMPLE

This triangle begins:

1;

0, 1;

0, 2, 0;

0, 4, 5, 0;

0, 8, 38, 14, 0;

0, 16, 184, 262, 42, 0;

0, 32, 720, 2460, 1602, 132, 0;

0, 64, 2480, 16360, 25837, 9260, 429, 0;

0, 128, 7840, 87920, 268134, 237870, 52040, 1430, 0;

0, 256, 23296, 408128, 2109040, 3638386, 2023992, 288494, 4862, 0;

0, 512, 66048, 1701504, 13676128, 40049492, 43815744, 16394336, 1590638, 16796, 0;

0, 1024, 180480, 6531840, 76845728, 349863976, 653001202, 487491424, 128720399, 8765044, 58786, 0;

0, 2048, 478720, 23485440, 386423488, 2571281744, 7476451420, 9591548748, 5139351752, 991185638, 48412190, 208012, 0; ...

Row sums (A120970) begin:

[1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, ...],

the g.f. of which satisfies: G(x) = 1 + Series_Reversion(x/G(x)^2).

GENERATING FUNCTION.

G.f.: A(x,y) = 1 + x*y + x^2*(2*y) + x^3*(4*y + 5*y^2) +

x^4*(8*y + 38*y^2 + 14*y^3) +

x^5*(16*y + 184*y^2 + 262*y^3 + 42*y^4) +

x^6*(32*y + 720*y^2 + 2460*y^3 + 1602*y^4 + 132*y^5) +

x^7*(64*y + 2480*y^2 + 16360*y^3 + 25837*y^4 + 9260*y^5 + 429*y^6) +

x^8*(128*y + 7840*y^2 + 87920*y^3 + 268134*y^4 + 237870*y^5 + 52040*y^6 + 1430*y^7) +

x^9*(256*y + 23296*y^2 + 408128*y^3 + 2109040*y^4 + 3638386*y^5 + 2023992*y^6 + 288494*y^7 + 4862*y^8) +...

where

A(x,y) = 1-x + y*x + Series_Reversion( x/A(x,y)^2 ).

RELATED SERIES.

A(x/A(x,y)^2, y) = 1 + y*x + (-2*y^2 + 2*y)*x^2 +

(3*y^3 - 7*y^2 + 4*y)*x^3 +

(-4*y^4 + 6*y^3 - 10*y^2 + 8*y)*x^4 +

(5*y^5 - 27*y^4 - 18*y^3 + 24*y^2 + 16*y)*x^5 +

(-6*y^6 - 14*y^5 - 312*y^4 + 60*y^3 + 240*y^2 + 32*y)*x^6 +

(7*y^7 - 147*y^6 - 1745*y^5 - 1675*y^4 + 2360*y^3 + 1136*y^2 + 64*y)*x^7 +

(-8*y^8 - 348*y^7 - 10744*y^6 - 25146*y^5 + 10246*y^4 + 21616*y^3 + 4256*y^2 + 128*y)*x^8 +

(9*y^9 - 1361*y^8 - 60738*y^7 - 267656*y^6 - 84094*y^5 + 265552*y^4 + 133952*y^3 + 14080*y^2 + 256*y)*x^9 +...

PROG

(PARI) {T(n, k) = local(A=[1]); for(i=1, n, A=Vec(1 + (y-1)*x + serreverse(x/Ser(A)^2))); polcoeff(A[n+1], k, y)}

for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

CROSSREFS

Cf. A120970, A000108.

Sequence in context: A117434 A115179 A131742 * A278280 A213370 A244138

Adjacent sequences:  A257810 A257811 A257812 * A257814 A257815 A257816

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 05:41 EST 2017. Contains 295868 sequences.