This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257813 G.f. satisfies: A(x,y) = 1-x + y*x + Series_Reversion( x/A(x,y)^2 ). 0
 1, 0, 1, 0, 2, 0, 0, 4, 5, 0, 0, 8, 38, 14, 0, 0, 16, 184, 262, 42, 0, 0, 32, 720, 2460, 1602, 132, 0, 0, 64, 2480, 16360, 25837, 9260, 429, 0, 0, 128, 7840, 87920, 268134, 237870, 52040, 1430, 0, 0, 256, 23296, 408128, 2109040, 3638386, 2023992, 288494, 4862, 0, 0, 512, 66048, 1701504, 13676128, 40049492, 43815744, 16394336, 1590638, 16796, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The right-most nonzero numbers in this triangle form the Catalan numbers (A000108). LINKS FORMULA G.f. A(x,y) satisfies: A(x/A(x,y)^2, y) = 1+x + (y-1)*x/A(x,y)^2. EXAMPLE This triangle begins: 1; 0, 1; 0, 2, 0; 0, 4, 5, 0; 0, 8, 38, 14, 0; 0, 16, 184, 262, 42, 0; 0, 32, 720, 2460, 1602, 132, 0; 0, 64, 2480, 16360, 25837, 9260, 429, 0; 0, 128, 7840, 87920, 268134, 237870, 52040, 1430, 0; 0, 256, 23296, 408128, 2109040, 3638386, 2023992, 288494, 4862, 0; 0, 512, 66048, 1701504, 13676128, 40049492, 43815744, 16394336, 1590638, 16796, 0; 0, 1024, 180480, 6531840, 76845728, 349863976, 653001202, 487491424, 128720399, 8765044, 58786, 0; 0, 2048, 478720, 23485440, 386423488, 2571281744, 7476451420, 9591548748, 5139351752, 991185638, 48412190, 208012, 0; ... Row sums (A120970) begin: [1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, ...], the g.f. of which satisfies: G(x) = 1 + Series_Reversion(x/G(x)^2). GENERATING FUNCTION. G.f.: A(x,y) = 1 + x*y + x^2*(2*y) + x^3*(4*y + 5*y^2) + x^4*(8*y + 38*y^2 + 14*y^3) + x^5*(16*y + 184*y^2 + 262*y^3 + 42*y^4) + x^6*(32*y + 720*y^2 + 2460*y^3 + 1602*y^4 + 132*y^5) + x^7*(64*y + 2480*y^2 + 16360*y^3 + 25837*y^4 + 9260*y^5 + 429*y^6) + x^8*(128*y + 7840*y^2 + 87920*y^3 + 268134*y^4 + 237870*y^5 + 52040*y^6 + 1430*y^7) + x^9*(256*y + 23296*y^2 + 408128*y^3 + 2109040*y^4 + 3638386*y^5 + 2023992*y^6 + 288494*y^7 + 4862*y^8) +... where A(x,y) = 1-x + y*x + Series_Reversion( x/A(x,y)^2 ). RELATED SERIES. A(x/A(x,y)^2, y) = 1 + y*x + (-2*y^2 + 2*y)*x^2 + (3*y^3 - 7*y^2 + 4*y)*x^3 + (-4*y^4 + 6*y^3 - 10*y^2 + 8*y)*x^4 + (5*y^5 - 27*y^4 - 18*y^3 + 24*y^2 + 16*y)*x^5 + (-6*y^6 - 14*y^5 - 312*y^4 + 60*y^3 + 240*y^2 + 32*y)*x^6 + (7*y^7 - 147*y^6 - 1745*y^5 - 1675*y^4 + 2360*y^3 + 1136*y^2 + 64*y)*x^7 + (-8*y^8 - 348*y^7 - 10744*y^6 - 25146*y^5 + 10246*y^4 + 21616*y^3 + 4256*y^2 + 128*y)*x^8 + (9*y^9 - 1361*y^8 - 60738*y^7 - 267656*y^6 - 84094*y^5 + 265552*y^4 + 133952*y^3 + 14080*y^2 + 256*y)*x^9 +... PROG (PARI) {T(n, k) = local(A=[1]); for(i=1, n, A=Vec(1 + (y-1)*x + serreverse(x/Ser(A)^2))); polcoeff(A[n+1], k, y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) CROSSREFS Cf. A120970, A000108. Sequence in context: A117434 A115179 A131742 * A278280 A213370 A244138 Adjacent sequences:  A257810 A257811 A257812 * A257814 A257815 A257816 KEYWORD nonn AUTHOR Paul D. Hanna, May 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.