This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257776 Decimal expansion of (e/3)^3. 4
 7, 4, 3, 9, 0, 8, 7, 7, 4, 9, 3, 2, 8, 7, 6, 5, 8, 2, 9, 9, 7, 3, 5, 2, 9, 5, 0, 1, 6, 9, 6, 9, 3, 2, 5, 5, 4, 4, 3, 9, 9, 6, 5, 8, 6, 6, 1, 3, 1, 1, 6, 6, 7, 2, 0, 1, 4, 0, 3, 4, 6, 0, 1, 0, 9, 9, 9, 5, 7, 2, 5, 4, 7, 4, 4, 1, 4, 7, 1, 7, 5, 2, 2, 9, 7, 9, 6, 1, 9, 1, 1, 2, 0, 4, 8, 2, 1, 3, 7, 1, 1, 6, 8, 0, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The coefficient a of the unique cubic function y=a*x^3 which kisses the exponential function y=exp(x). In general, a function y = c*x^n kisses the exponential at some x > 0 iff the coefficient c equals (e/n)^n. The kissing point is (n, e^n). LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 EXAMPLE 0.743908774932876582997352950169693255443996586613116672014034601... PROG (PARI) (exp(3)/3)^3 CROSSREFS Cf. A001113, A019740; A257775 (n=2), A257777 (n=1). Sequence in context: A244817 A199727 A255168 * A065477 A272526 A100041 Adjacent sequences:  A257773 A257774 A257775 * A257777 A257778 A257779 KEYWORD nonn,cons,easy AUTHOR Stanislav Sykora, May 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.