%I #19 Jun 26 2023 02:21:09
%S 1,8,4,7,2,6,4,0,2,4,7,3,2,6,6,2,5,5,6,8,0,7,6,0,6,8,6,5,1,4,3,7,5,1,
%T 9,5,3,2,9,5,0,7,8,8,9,2,6,3,7,9,6,1,8,3,1,0,2,1,7,8,1,9,5,5,6,3,0,6,
%U 4,3,4,4,9,0,1,9,7,6,4,4,4,0,8,4,6,0,7,8,1,2,1,2,6,9,7,8,0,4,4,8,6,9,3,4,3
%N Decimal expansion of (e/2)^2.
%C The coefficient a of the unique parabola y = a*x^2 which, at some x > 0, kisses the exponential function y = exp(x). The kissing point coordinates are (2,e^2).
%H Stanislav Sykora, <a href="/A257775/b257775.txt">Table of n, a(n) for n = 1..2000</a>
%e 1.847264024732662556807606865143751953295078892637961831021781955630...
%t RealDigits[Exp[2]/4, 10, 120][[1]] (* _Amiram Eldar_, Jun 26 2023 *)
%o (PARI) exp(2)/4
%Y Cf. A001113, A019739, A257776, A257777.
%K nonn,cons,easy
%O 1,2
%A _Stanislav Sykora_, May 12 2015