|
|
A257713
|
|
Triangular numbers (A000217) that are the sum of ten consecutive triangular numbers.
|
|
6
|
|
|
1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485, 15054681960, 60093684540, 296985006165, 4392693942120, 21708840917445, 86655051404085, 428252172907560, 6334261618255845, 31304133548245020, 124956524030977320, 617539336347666645
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1442,-1442,0,0,-1,1).
|
|
FORMULA
|
G.f.: -15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)).
|
|
EXAMPLE
|
1485 is in the sequence because T(54) = 1485 = 78+91+105+120+136+153+171+190+210+231 = T(12)+ ... +T(21).
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, 1442, -1442, 0, 0, -1, 1}, {1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
|
|
PROG
|
(PARI) Vec(-15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)) + O(x^100))
|
|
CROSSREFS
|
Cf. A000217, A001110, A129803, A131557, A257711, A257712, A259413, A259414, A259415.
Sequence in context: A137366 A045008 A327880 * A269923 A288075 A104742
Adjacent sequences: A257710 A257711 A257712 * A257714 A257715 A257716
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Barker, May 05 2015
|
|
STATUS
|
approved
|
|
|
|