%I #17 Jun 08 2024 15:44:21
%S 1024,4096,5776,240100,540225,960400,1500625,2160900,26357956,
%T 688012900,843612025,1548029025,2296038889,2353026064,2679097600,
%U 2752051600,3374448100,4300080625
%N Squares that are the concatenation of two Pythagorean integers a and b with a^2 + b^2 = c^2 (a and b are without any left-hand zeros).
%C Squares that can be split up in more than one way appear only once.
%H Reiner Moewald and Giovanni Resta, <a href="/A257650/b257650.txt">Table of n, a(n) for n = 1..156</a> (first 22 terms from Reiner Moewald)
%e 1024 = 32^2 and 10^2 + 24^2 = 26^2.
%o (Python)
%o import math
%o print("Start")
%o list =[]
%o for i in range(1, 100000):
%o a = i*i
%o b = str(a)
%o l = len(b)
%o for j in range(1, l):
%o a_1 = b[:j]
%o a_2 = b[j:]
%o c = int(a_1)*int(a_1)+int(a_2)*int(a_2)
%o sqrt_c = int(math.sqrt(int(c)))
%o if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
%o if not a in list:
%o list.append(a)
%o print(list)
%o print("End")
%K nonn,base
%O 1,1
%A _Reiner Moewald_, Jul 25 2015