login
A257650
Squares that are the concatenation of two Pythagorean integers a and b with a^2 + b^2 = c^2 (a and b are without any left-hand zeros).
1
1024, 4096, 5776, 240100, 540225, 960400, 1500625, 2160900, 26357956, 688012900, 843612025, 1548029025, 2296038889, 2353026064, 2679097600, 2752051600, 3374448100, 4300080625
OFFSET
1,1
COMMENTS
Squares that can be split up in more than one way appear only once.
LINKS
Reiner Moewald and Giovanni Resta, Table of n, a(n) for n = 1..156 (first 22 terms from Reiner Moewald)
EXAMPLE
1024 = 32^2 and 10^2 + 24^2 = 26^2.
PROG
(Python)
import math
print("Start")
list =[]
for i in range(1, 100000):
a = i*i
b = str(a)
l = len(b)
for j in range(1, l):
a_1 = b[:j]
a_2 = b[j:]
c = int(a_1)*int(a_1)+int(a_2)*int(a_2)
sqrt_c = int(math.sqrt(int(c)))
if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
if not a in list:
list.append(a)
print(list)
print("End")
CROSSREFS
Sequence in context: A195093 A258734 A195234 * A255664 A358001 A195004
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, Jul 25 2015
STATUS
approved