login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257543 Expansion of 1 / (1 - x^5 - x^8 + x^9) in powers of x. 1
1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 1, 0, 0, 2, -2, 1, 1, -2, 4, -3, 1, 3, -6, 7, -3, -2, 9, -13, 11, -1, -11, 22, -23, 12, 10, -33, 46, -35, 2, 43, -78, 81, -37, -41, 122, -159, 118, 4, -162, 281, -277, 114, 167, -443, 558, -391, -52, 610, -1001, 949, -338, -662 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,1,-1).

FORMULA

G.f.: 1 / ((1 - x^4) * (1 + x^4 - x^5)) = (1 + x) / ((1 + x^3) * (1 - x^4) * (1 + x - x^3)).

a(n) = a(n-5) + a(n-8) - a(n-9) for all n in Z.

a(n) - a(n+2) - a(n+3) has period 12.

a(n) - a(n+12) = A104769(n+5) = -A247917(n+4) for all n in Z.

a(n) + a(n+1) = A247918(n) for all n in Z.

a(n) = -A233522(-9 - n) for all n in Z.

EXAMPLE

G.f. = 1 + x^5 + x^8 - x^9 + x^10 + 2*x^13 - 2*x^14 + x^15 + x^16 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ If[ n >= 0, 1 / (1 - x^5 - x^8 + x^9), -x^9 /(1 - x - x^4 + x^9)], {x, 0, Abs@n}];

PROG

(PARI) {a(n) = if( n>=0, polcoeff( 1 / (1 - x^5 - x^8 + x^9) + x * O(x^n), n), polcoeff( -x^9 / (1 - x - x^4 + x^9) + x * O(x^-n), -n))};

(MAGMA) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 / ((1-x^4)*(1+x^4-x^5)))); // G. C. Greubel, Aug 02 2018

CROSSREFS

Cf. A104769, A233522, A247917, A247918.

Sequence in context: A059260 A239473 A135229 * A081372 A101489 A104156

Adjacent sequences:  A257540 A257541 A257542 * A257544 A257545 A257546

KEYWORD

sign,easy

AUTHOR

Michael Somos, Apr 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 13:01 EDT 2020. Contains 337344 sequences. (Running on oeis4.)