login
A257513
Square array A(row,col) = A083221(row+1,col) - A083221(row,col): the first differences of each column of array constructed from the sieve of Eratosthenes.
4
1, 5, 2, 9, 16, 2, 13, 20, 24, 4, 17, 34, 42, 72, 2, 21, 38, 36, 66, 48, 4, 25, 52, 54, 96, 78, 120, 2, 29, 56, 48, 90, 60, 102, 72, 4, 33, 70, 66, 120, 90, 144, 114, 168, 6, 37, 74, 88, 158, 124, 194, 160, 230, 312, 2, 41, 88, 92, 138, 84, 150, 96, 162, 232, 120, 6, 45, 92, 114, 190, 140, 226, 176, 262, 360, 248, 408, 4
OFFSET
1,2
COMMENTS
The array is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
FORMULA
A(row,col) = A083221(row+1,col) - A083221(row,col).
EXAMPLE
The top left corner of the array:
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61
2, 16, 20, 34, 38, 52, 56, 70, 74, 88, 92, 106, 110, 124, 128, 142
2, 24, 42, 36, 54, 48, 66, 88, 92, 114, 132, 126, 144, 138, 156, 178
4, 72, 66, 96, 90, 120, 158, 138, 190, 192, 186, 216, 254, 306, 300, 324
2, 48, 78, 60, 90, 124, 84, 140, 126, 108, 138, 172, 184, 144, 200, 186
4, 120, 102, 144, 194, 150, 226, 216, 198, 240, 290, 314, 270, 346, 336, 318
2, 72, 114, 160, 96, 176, 150, 120, 162, 208, 220, 156, 236, 210, 180, 260
4, 168, 230, 162, 262, 240, 210, 264, 326, 350, 282, 382, 360, 330, 430, 408
6, 312, 232, 360, 338, 304, 374, 456, 492, 412, 540, 518, 484, 612, 590, 672
2, 120, 248, 198, 144, 210, 280, 292, 180, 308, 258, 204, 332, 282, 352, 426
6, 408, 370, 320, 406, 504, 540, 428, 588, 550, 500, 660, 622, 720, 830, 730
4, 312, 246, 336, 434, 458, 318, 490, 432, 366, 538, 480, 578, 684, 552, 486
2, 168, 258, 352, 364, 204, 380, 306, 228, 404, 330, 424, 522, 366, 288, 378
4, 360, 470, 494, 330, 526, 456, 378, 574, 504, 614, 732, 576, 498, 600, 522
6, 600, 636, 460, 684, 614, 532, 756, 686, 816, 958, 794, 712, 830, 748, 866
...
PROG
(Scheme)
(define (A257513 n) (A257513bi (A002260 n) (A004736 n)))
(define (A257513bi row col) (- (A083221bi (+ 1 row) col) (A083221bi row col))) ;; A083221bi given in A083221.
CROSSREFS
Transpose: A257514.
Row 1: A016813.
Column 1: A001223, Column 2: A069482, Column 3: A109805, Column 4: A226502 (apart from the first term).
Sequence in context: A065282 A274930 A080379 * A276849 A367210 A375613
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, May 01 2015
STATUS
approved