login
A257487
Expansion of ( -4+15*x-8*x^2 ) / ( (x-1)*(x^2-4*x+1) ).
1
4, 5, 13, 44, 160, 593, 2209, 8240, 30748, 114749, 428245, 1598228, 5964664, 22260425, 83077033, 310047704, 1157113780, 4318407413, 16116515869, 60147656060, 224474108368, 837748777409, 3126521001265, 11668335227648, 43546819909324
OFFSET
0,1
LINKS
FORMULA
a(n) = (5*A001353(n+1)-13*A001353(n)+3)/2. - R. J. Mathar, May 26 2016
MAPLE
A257487 := proc(n)
(5+sqrt(3))/4*(2-sqrt(3))^n+(5-sqrt(3))/4*(2+sqrt(3))^n+3/2 ;
expand(%) ;
end proc:
seq(A257487(n), n=0..30) ;
PROG
(PARI) Vec(( -4+15*x-8*x^2 ) / ( (x-1)*(x^2-4*x+1) ) + O(x^50)) \\ Michel Marcus, Apr 26 2015
CROSSREFS
Cf. A055845 (first differences).
Sequence in context: A071341 A272898 A102981 * A249394 A295278 A029663
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Apr 26 2015
STATUS
approved