login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257449 a(n) = 75*(2^n - 1) - 4*n^3 - 18*n^2 - 52*n. 2
1, 17, 99, 373, 1115, 2901, 6907, 15509, 33483, 70405, 145451, 296997, 601819, 1213493, 2439195, 4893301, 9804587, 19630629, 39286603, 78602885, 157240251, 314520277, 629086139, 1258224213, 2516507275, 5033080901, 10066236267, 20132555749, 40265204123 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See the first comment of A257448.

LINKS

Table of n, a(n) for n=1..29.

Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).

FORMULA

G.f.: -x*(1 + x)*(1 + 10*x + x^2)/((-1 + x)^4*(-1 + 2*x)).

a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5) for n>5.

EXAMPLE

This sequence provides the antidiagonal sums of the array:

1, 16,  81, 256,  625,  1296, ...   A000583

1, 17,  98, 354,  979,  2275, ...   A000538

1, 18, 116, 470, 1449,  3724, ...   A101089

1, 19, 135, 605, 2054,  5778, ...   A101090

1, 20, 155, 760, 2814,  8592, ...   A101091

1, 21, 176, 936, 3750, 12342, ...   A254681

...

See also A254681 (Example field).

MATHEMATICA

Table[75 (2^n - 1) - 4 n^3 - 18 n^2 - 52 n, {n, 30}]

PROG

(MAGMA) [75*(2^n-1)-4*n^3-18*n^2-52*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015

CROSSREFS

Cf. A000225, A000670, A050488, A208744, A257448, A257450.

Sequence in context: A294586 A265838 A098997 * A301548 A139497 A139913

Adjacent sequences:  A257446 A257447 A257448 * A257450 A257451 A257452

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Apr 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)