login
A257433
Decimal expansion of the smallest negative real root of the equation Gamma(x) = -1 (negated).
2
2, 4, 5, 7, 0, 2, 4, 7, 3, 8, 2, 2, 0, 8, 0, 0, 6, 2, 3, 0, 3, 9, 4, 5, 4, 1, 4, 7, 6, 5, 1, 1, 7, 9, 5, 4, 3, 2, 3, 6, 5, 9, 7, 9, 0, 9, 0, 3, 3, 7, 8, 4, 4, 2, 0, 9, 6, 4, 7, 9, 4, 4, 9, 5, 2, 8, 0, 6, 1, 2, 6, 3, 4, 2, 6, 0, 4, 9, 4, 9, 6, 1, 7, 0, 2, 3, 7, 0, 2, 9, 2, 6, 5, 5, 7, 2, 8, 2, 0, 6, 6, 1, 8, 3
OFFSET
1,1
LINKS
Philippe Flajolet, Stefan Gerhold and Bruno Salvy, Lindelöf Representations and (Non-)Holonomic Sequences, Electronic Journal of Combinatorics, vol 17(1):R3, 2010, p. 10.
Eric Weisstein's MathWorld, Gamma Function
FORMULA
-3 < A257434 = -2.747682... < A175474 = -2.61072... < A257433 = -2.457024... < -2.
EXAMPLE
-2.45702473822080062303945414765117954323659790903378442...
MATHEMATICA
x1 = x /. FindRoot[Gamma[x] == -1, {x, -5/2}, WorkingPrecision -> 104]; RealDigits[x1] // First
CROSSREFS
Sequence in context: A098504 A137653 A021411 * A005532 A026202 A249910
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved