

A257413


Values of n such that there are exactly 6 solutions to x^2  y^2 = n with x > y >= 0.


8



240, 288, 315, 336, 360, 384, 432, 495, 504, 525, 528, 560, 585, 600, 624, 640, 675, 693, 735, 765, 792, 800, 816, 819, 825, 855, 880, 896, 912, 936, 975, 1035, 1040, 1071, 1104, 1125, 1176, 1197, 1215, 1224, 1232, 1260, 1275, 1287, 1305, 1323, 1360, 1368
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Colin Barker, Table of n, a(n) for n = 1..1100


EXAMPLE

240 is in the sequence because there are 6 solutions to x^2  y^2 = 240, namely (x,y) = (16,4), (17,7), (19,11), (23,17), (32,28), (61,59).


MATHEMATICA

nn = 2000;
t = Table[0, {nn}];
Do[n = x^2  y^2; If[n <= nn, t[[n]]++], {x, nn}, {y, 0, x  1}];
Position[t, 6] // Flatten (* JeanFrançois Alcover, Jun 18 2020, after T. D. Noe in A034178 *)


PROG

(PARI) is_A257413(n)={A034178(n)==6} \\ M. F. Hasler, Apr 22 2015


CROSSREFS

Cf. A257408, A257409, A257410, A257411, A257412, A257414, A257415, A257416, A257417.
Cf. A034178.
Sequence in context: A031173 A067373 A291921 * A030638 A179644 A099833
Adjacent sequences: A257410 A257411 A257412 * A257414 A257415 A257416


KEYWORD

nonn


AUTHOR

Colin Barker, Apr 22 2015


STATUS

approved



