login
Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum equal to the antidiagonal sum or central row sum less than the central column sum
1

%I #4 Apr 20 2015 13:51:55

%S 12100,20449,45796,101124,246016,622521,1249924,2598544,6200100,

%T 15225604,31651876,68244121,158860816,378146916,806332816,1776622500,

%U 4052850244,9490461561,20534890000,45856367881,103396974916,239629830400

%N Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum equal to the antidiagonal sum or central row sum less than the central column sum

%C Column 4 of A257361

%H R. H. Hardin, <a href="/A257357/b257357.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-2) +17*a(n-4) -57*a(n-6) +2*a(n-8) -60*a(n-10) -127*a(n-12) +598*a(n-14) -292*a(n-16) +315*a(n-18) +312*a(n-20) -1149*a(n-22) +223*a(n-26) -55*a(n-28) +127*a(n-30) +51*a(n-32) -32*a(n-34) -6*a(n-36) -5*a(n-38) -a(n-40) +a(n-42) for n>46

%e Some solutions for n=4

%e ..0..1..0..1..1..0....1..1..0..1..0..1....1..0..0..1..0..0....0..0..0..1..0..0

%e ..1..0..1..1..0..1....1..1..1..0..0..0....0..0..1..0..0..1....1..0..0..1..1..0

%e ..0..1..1..0..0..1....1..1..1..0..0..1....0..1..0..0..1..1....1..1..0..0..1..1

%e ..1..1..0..0..1..1....1..0..0..1..1..0....1..0..0..1..1..0....0..1..1..0..0..1

%e ..1..0..0..1..1..1....1..0..0..1..1..1....0..0..1..1..0..0....1..0..1..1..0..1

%e ..0..0..1..0..1..0....0..0..1..0..1..1....1..1..1..0..0..0....0..1..0..1..0..0

%Y Cf. A257361

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 20 2015