

A257342


Solution to Popular Computing Problem 56 (decimal).


2



8, 8, 9, 0, 0, 0, 3, 5, 4, 9, 6, 9, 5, 2, 3, 0, 1, 3, 9, 3, 4, 6, 7, 1, 9, 6, 9, 0, 8, 7, 9, 1, 2, 9, 3, 1, 0, 5, 3, 8, 4, 8, 0, 2, 1, 0, 1, 7, 9, 5, 4, 3, 4, 1, 4, 5, 4, 3, 4, 6, 5, 3, 7, 0, 0, 3, 2, 3, 9, 6, 3, 5, 0, 8, 5, 2, 5, 3, 1, 2, 8, 6, 1, 1, 0, 9, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See link for precise definition. This is the constant in A257341 written in base 10.


LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..10000
Popular Computing (Calabasas, CA), Solution to Problem 56, Vol. 4 (No. 39, June 1976), page PC393 [Annotated and scanned copy]


EXAMPLE

0.88900035496952301393467196908791293...


PROG

(Python)
from fractions import Fraction
from math import log10
A257342_list, m, y = [], 2, Fraction(0, 1)
for i in range(2, 100):
....for j in range(1, i):
....x = Fraction(j, i)
........if x.denominator == i:
............y += Fraction(int(m*x) % 2, m)
............m *= 2
for i in range(int(log10(m))2):
....y *= 10
....A257342_list.append(int(y) % 10) # Chai Wah Wu, Apr 29 2015


CROSSREFS

Cf. A020652, A038567, A257341.
Sequence in context: A266209 A077106 A255287 * A252850 A195717 A193781
Adjacent sequences: A257339 A257340 A257341 * A257343 A257344 A257345


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane, Apr 27 2015


EXTENSIONS

More terms from Chai Wah Wu, Apr 29 2015


STATUS

approved



