%I #21 Jan 02 2023 12:30:51
%S 1,2,3,4,5,6,7,8,9,735,18432,442368,3682784876146817236992
%N Numbers equal to some partial product of the sequence of their digits, repeated over and over again.
%C The sequence is conjectured to be finite (D. Wilson, Reply on the SeqFan list).
%C There are no additional terms below 10^300. - _Max Alekseyev_, Apr 29 2015
%H E. Angelini (and replies by H. P. Dale and D. Wilson), <a href="http://list.seqfan.eu/oldermail/seqfan/2015-April/014744.html">Cumulative multiplication</a>, April 18, 2015
%H C. Meller, <a href="http://simplementenumeros.blogspot.mx/2015/04/1392-producto-acumulado.html#comment-form">1392 - Producto acumulado</a>, April 21, 2015.
%H C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_784.htm">Puzzle 784: Find some more solutions</a>, April 25, 2015
%e 735 = 7 * 3 * 5 * 7
%e 18432 = 1 * 8 * 4 * 3 * 2 * 1 * 8 * 4 * 3
%e 442368 = 4 * 4 * 2 * 3 * 6 * 8 * 4 * 4 * 2 * 3
%e 3682784876146817236992 = A007954(3682784876146817236992) * A007954(3682784876). - _Giovanni Resta_, Apr 29 2015.
%t Select[Range[450000],MemberQ[FoldList[Times,PadRight[{},50,IntegerDigits[#]]],#]&] (* The program will generate the first 12 terms of the sequence. *) (* _Harvey P. Dale_, Jun 21 2017 *)
%o (PARI) is(n,d=digits(n),p=1)=for(i=0,n,(n>p*=d[i%#d+1])||return(n==p))
%Y Subsequence of A007602 and likely of A128606 and A257554. - _Max Alekseyev_, Apr 29 2015
%K nonn,base,more
%O 1,2
%A _M. F. Hasler_, Apr 29 2015
%E a(12) from _Harvey P. Dale_, Apr 18 2015
%E a(13) from _Giovanni Resta_, Apr 29 2015