login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257241 Irregular triangle read by rows: Stifel's version of the arithmetical triangle. 4
1, 2, 3, 3, 4, 6, 5, 10, 10, 6, 15, 20, 7, 21, 35, 35, 8, 28, 56, 70, 9, 36, 84, 126, 126, 10, 45, 120, 210, 252, 11, 55, 165, 330, 462, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 1716 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The row length of this array is A008619(n-1), for n >= 1: 1, 1, 2, 2, ...

This is a truncated version of Pascal's triangle used by Michael Stifel (1487?-1567). It already appeared on the title page (frontispiece) of Peter Apianus's book of 1527 on business arithmetic: "Eyn Newe Und wolgegründte underweysung aller Kauffmanns Rechnung in dreyen Büchern". See the Kac reference, p. 394 and Table 12.1 on p. 395. It appeared in Stifel's 1553 edition of Rudolff's Coß: "Die Coß Christoffs Rudolffs. Die schönen Exemplen der Coß Durch Michael Stifel gebessert und sehr gemehrt." See the MacTutor Archive link and the Alten reference.

The row sums give A258143. The alternating row sums give A258144.

T(n,A008619(n-1)) = A001405(n). - Reinhard Zumkeller, May 22 2015

REFERENCES

H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 260.

Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009.

Reich, Karin; Michael Stifel. In: Folkerts, Menso; Eberhard Knobloch; Karin Reich: Maß, Zahl und Gewicht: Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung. Wolfenbüttel 1989, S. 73 - 95 und 373.

LINKS

Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened

MacTutor History of Mathematics archive, Petrus Apianus.

MacTutor History of Mathematics archive, Michael Stifel

Maurer, Bertram, Michael Stifel, 1999, Kolping-Kolleg Stuttgart.

Wikipedia, Petrus Apianus.

Wikipedia, Michael Stifel.

FORMULA

T(n, m) = binomial(n, m), n >= 1, m = 1, 2, ..., ceiling(n/2).

O.g.f. row m = 1, 2, ..., 4 (with leading zeros): x/(1-x)^2, x^3*(3-3*x+x^2)/(1-x)^3, x^5*(10-20*x+15*x^2-4*x^3)/(1-x)^4, x^7*(35-105*x+126*x^2-70*x^3+15*x^4)/(1-x)^5.

EXAMPLE

The irregular triangle T(n, m) begins:

  n\m|  1    2    3    4    5    6    7 ...

  ---+-------------------------------------

   1 |  1

   2 |  2

   3 |  3    3

   4 |  4    6

   5 |  5   10   10

   6 |  6   15   20

   7 |  7   21   35   35

   8 |  8   28   56   70

   9 |  9   36   84  126  126

  10 | 10   45  120  210  252

  11 | 11   55  165  330  462  462

  12 | 12   66  220  495  792  924

  13 | 13   78  286  715 1287 1716 1716

  ...

PROG

(Haskell)

a257241 n k = a257241_tabf !! (n-1) !! (k-1)

a257241_row n = a257241_tabf !! (n-1)

a257241_tabf = iterate stifel [1] where

   stifel xs@(x:_) = if odd x then xs' else xs' ++ [last xs']

                     where xs' = zipWith (+) xs (1 : xs)

-- Reinhard Zumkeller, May 22 2015

CROSSREFS

Cf. A007318, A258143, A258144, A014410 (Scheubel's version).

Cf. A001405 (right edge).

Sequence in context: A304705 A131187 A099072 * A239964 A290585 A106464

Adjacent sequences:  A257238 A257239 A257240 * A257242 A257243 A257244

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, May 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 16:17 EDT 2019. Contains 322310 sequences. (Running on oeis4.)