This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257222 Numbers n that have at least one divisor containing the digit 5 in base 10. 8
 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n whose concatenation of divisors A037278(n), A176558(n), A243360(n) or A256824(n) contains a digit 5. Sequences of numbers n whose concatenation of divisors contains a digit k in base 10 for 0 <= k <= 9: A209932 for k = 0, A000027 for k = 1, A257219 for k = 2, A257220 for k = 3, A257221 for k = 4, A257222 for k = 5, A257223 for k = 6, A257224 for k = 7, A257225 for k = 8, A257226 for k = 9. LINKS FORMULA a(n) ~ n. EXAMPLE 20 is in sequence because the list of divisors of 20: (1, 2, 4, 5, 10, 20) contains digit 5. MATHEMATICA Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 5] > 0 &] Select[Range, Max[DigitCount[Divisors[#], 10, 5]]>0&] (* Harvey P. Dale, Sep 15 2018 *) PROG (MAGMA) [n: n in [1..1000] |  subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))] (PARI) is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 5), return(1))); 0 (Python) from sympy import divisors A257222_list = [n for n in range(1, 10**3) if '5' in set().union(*(set(str(d)) for d in divisors(n, generator=True)))] # Chai Wah Wu, May 06 2015 (Perl) use ntheory ":all"; for my \$n (1..1000) { say \$n if scalar(grep {/5/} divisors(\$n)) } # Dana Jacobsen, May 07 2015 (Perl) use ntheory ":all"; my @a257222 = grep { scalar(grep {/5/} divisors(\$_)) } 1..1000; # Dana Jacobsen, May 07 2015 CROSSREFS Cf. A037278, A176558, A243360, A256824. Sequence in context: A313733 A076311 A063284 * A092454 A248359 A008706 Adjacent sequences:  A257219 A257220 A257221 * A257223 A257224 A257225 KEYWORD nonn,base AUTHOR Jaroslav Krizek, May 05 2015 EXTENSIONS Programs MATHEMATICA and PARI with assistance by Michael De Vlieger and Charles R Greathouse IV respectively. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 15:14 EDT 2019. Contains 328030 sequences. (Running on oeis4.)