This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257093 a(n) = n*(n+1)*(13*n+2)/6. 0
 0, 5, 28, 82, 180, 355, 560, 868, 1272, 1785, 2420, 3190, 4108, 5187, 6440, 7880, 9520, 11373, 15770, 18340, 21175, 24288, 27692, 31400, 35425, 39780, 44478, 49532, 54955, 60760, 73568, 80597, 88060, 95970, 104340, 113183, 122512, 132340, 142680, 153545 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence gives the number of triangles of all sizes in (5*n^2)-polyiamonds in a tetragonal or hexagonal or heptagonal configuration. It is the sum of (1/2)*Sum{j=0..n-1}(n-j)*(5*n+1-j) triangles oriented in one direction and (1/2)*Sum{j-0..n-1}(n-j)*(5*n-1-3*j) oriented in the opposite direction. ShÃ¤fli's notation: 3.3.3.3.3 for a(1). The difference between this sequence and A050409(n) equals A000292(n-1). Also, (1/3)*(A002717(2*n) + A255211(n) - 2*A000330(n) gives A033994(n): a (5*n^2)-polyiamond in pentagonal configuration that does not belong to this sequence because a(1)=6. a(n) is odd only when n mod 4 = 1. LINKS Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = Sum_{j=0..n-1}(n-j)*(5*n-2*j). G.f.: x*(5+8*x)/(1-x)^4. - Vincenzo Librandi, Apr 16 2015 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 16 2015 EXAMPLE Second comment a(0) = 0; a(1) = 3 + 2;  a(2) = 16 + 12;  a(3) = 46 + 36; a(4) = 100 + 80; a(5) = 185 + 150; a(6) = 308 + 252. MATHEMATICA Table[n (n + 1) (13 n + 2)/6, {n, 0, 40}] (* Vincenzo Librandi, Apr 16 2015 *) PROG (MAGMA) [n*(n+1)*(13*n+2)/6: n in [0..40]]; // Vincenzo Librandi, Apr 16 2015 CROSSREFS Cf. A002411, A011379, A033429, A050409, A000292, A002717, A000330, A033994, A255211. Sequence in context: A063140 A316560 A275709 * A225261 A088727 A027016 Adjacent sequences:  A257090 A257091 A257092 * A257094 A257095 A257096 KEYWORD nonn,easy AUTHOR Luce ETIENNE, Apr 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 16:14 EST 2019. Contains 319307 sequences. (Running on oeis4.)