login
Number of 3-colored Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.
1

%I #29 Sep 24 2016 18:26:34

%S 1,4,17,77,374,1959,11085,67500,438485,3004985,21485222,158744467,

%T 1202966761,9297312916,72981656937,580105886517,4658713796790,

%U 37736326098735,307913254091925,2528335636842300,20875157745756429

%N Number of 3-colored Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.

%H G. C. Greubel, <a href="/A257072/b257072.txt">Table of n, a(n) for n = 0..500</a>

%F G.f.: 8/(7-27*z+sqrt(1-10*z+9*z^2))=1/(1-3*z-z*F(z)), where F(z) is the g.f. of the sequence A059231.

%F a(n) = (3^n+Sum_{m=1..n}(m*Sum_{j=0..n-m}(((Sum_{k=0..j}(binomial(j+m,k)*binomial(j-1,j-k)*4^(j-k)))*3^(n-j-m)*binomial(n-j,m))/(j+m)))). - _Vladimir Kruchinin_, Mar 13 2016

%F a(n) ~ sqrt(2)*3^(2*n-1) / (2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 13 2016

%F From _Benedict W. J. Irwin_, May 29 2016: (Start)

%F Let y(0)=1/8, y(1)=1/2, y(2)=17/8, y(3)=77/8, y(4)=187/4,

%F Let 3645*(n+1)*(n+2)*y(n)-(5508n^2+21384n+20736)*y(n+1)+(2061n^2+7857n+6120)*y(n+2)-(175n^2+165n-1330)*y(n+3)-(26n^2+270n+664)*y(n+4)+3*(n+4)*(n+5)*y(n+5) = 0,

%F a(n) = 8*y(n).

%F (End)

%F Conjecture: 3*n*a(n) +(-53*n+45)*a(n-1) +2*(151*n-213)*a(n-2) +9*(-73*n+144)*a(n-3) +405*(n-3)*a(n-4)=0. - _R. J. Mathar_, Sep 24 2016

%e a(1) = 4 because we have H1, H2, H2, UD.

%t Table[8 DifferenceRoot[Function[{y, n}, {3645 (1 + n) (2 + n) y[n] + (-20736 - 21384 n - 5508 n^2) y[1 + n] + (6120 + 7857 n + 2061 n^2) y[2 + n] + (1330 - 165 n - 175 n^2) y[3 + n] + (-664 - 270 n - 26 n^2) y[4 + n] + 3 (4 + n) (5 + n) y[5 + n] == 0, y[0] == 1/8, y[1] == 1/2, y[2] == 17/8, y[3] == 77/8, y[4] == 187/4}]][k], {k, 0, 20}] (* _Benedict W. J. Irwin_, May 29 2016 *)

%t CoefficientList[Series[8/(7 -27*x +Sqrt[1 -10*x +9*x^2]), {x,0,50}], x] (* _G. C. Greubel_, May 29 2016 *)

%o (Maxima)

%o a(n):=(sum(m*sum(((sum(binomial(j+m,k)*binomial(j-1,j-k)*4^(j-k),k,0,j))*3^(n-j-m)*binomial(n-j,m))/(j+m),j,0,n-m),m,1,n))+3^n; /* _Vladimir Kruchinin_, Mar 13 2016 */

%Y Cf. A224071, A250307, A059231

%K nonn

%O 0,2

%A _José Luis Ramírez Ramírez_, Apr 20 2015