|
|
A257034
|
|
Numbers k such that 7*R_(k+2) + 2*10^k is prime, where R_k = 11...1 is the repunit (A002275) of length n.
|
|
0
|
|
|
0, 1, 3, 9, 16, 30, 45, 123, 171, 295, 324, 2785, 2791, 3910, 4015, 4050, 6319, 6415, 14670
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also, numbers k such that (718*10^n-7)/9 is prime.
Terms from Kamada.
a(20) > 10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..19.
Makoto Kamada, Near-repdigit numbers of the form ABAA...AA.
Makoto Kamada, Prime numbers of the form 7977...77.
Index entries for primes involving repunits.
|
|
EXAMPLE
|
For k=3, 7*R_5 + 2*10^3 = 77777 + 2000 = 79777 which is prime.
|
|
MATHEMATICA
|
Select[Range[0, 30000], PrimeQ[(718*10^#-7)/9 ] &]
|
|
PROG
|
(MAGMA) [n: n in [0..400] | IsPrime((718*10^n-1) div 9)]; // Vincenzo Librandi, Apr 15 2015
|
|
CROSSREFS
|
Cf. A002275.
Sequence in context: A244475 A212870 A306447 * A232167 A058538 A197531
Adjacent sequences: A257031 A257032 A257033 * A257035 A257036 A257037
|
|
KEYWORD
|
more,hard,nonn
|
|
AUTHOR
|
Robert Price, Apr 14 2015
|
|
STATUS
|
approved
|
|
|
|