%I #57 Sep 08 2022 08:46:12
%S -50,-49,-48,-47,-46,-45,-44,-43,-42,-41,-40,-39,-38,-37,-36,-35,-34,
%T -33,-32,-31,-30,-29,-28,-27,-26,-25,-24,-23,-22,-21,-20,-19,-18,-17,
%U -16,-15,-14,-13,-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
%N The integers (shown from -50 on).
%C The first 101 terms are the central 101 terms of the integers.
%C The reason for including this entry is to provide search results for sequences of the form -k, -k+1, -k+2, ... for small positive k.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 2 a(n-1) - a(n-2). G.f.: x^(-50)*(-50 + 51*x)/(1 - x)^2. - _M. F. Hasler_, Apr 18 2015
%t Range[101] - 51 (* _Alonso del Arte_, Apr 14 2015 *)
%o (Magma) [n: n in [-50..50]]; // _Vincenzo Librandi_, Apr 14 2015
%o (Python) list(range(-50, 51)) # _Danny Rorabaugh_, Apr 18 2015
%o (PARI) vector(101,n,n-51) \\ In the spirit of other "programs", but actually the result does not have offset -50. - _M. F. Hasler_, Apr 19 2015
%o (PARI) A256958(n)=n \\ _M. F. Hasler_, Apr 19 2015
%Y See A001477 for the nonnegative integers and A000027 for the positive terms.
%Y See A001057, A130472 for other enumerations of the integers.
%Y See also A023443, ..., A023477, A023479, ..., A023482, A022958, ..., A022996; A053615.
%Y The first 101 terms are the 50th row of triangle A196199. - _Omar E. Pol_, Apr 14 2015
%K sign,easy
%O -50,1
%A _Rick L. Shepherd_ and _N. J. A. Sloane_, Apr 14 2015
%E Revised by _N. J. A. Sloane_, Apr 19 2015 at the suggestion of _M. F. Hasler_