This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256956 Product of two consecutive terms of pi(n): a(n) = pi(n) * pi(n+1), where pi(n) = A000720(n) gives the number of primes <= n. 1
 0, 2, 4, 6, 9, 12, 16, 16, 16, 20, 25, 30, 36, 36, 36, 42, 49, 56, 64, 64, 64, 72, 81, 81, 81, 81, 81, 90, 100, 110, 121, 121, 121, 121, 121, 132, 144, 144, 144, 156, 169, 182, 196, 196, 196, 210, 225, 225, 225, 225, 225, 240, 256, 256, 256, 256, 256, 272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is a perfect square (A000290) if and only if a(n) = a(n+1) [i.e., when n+1 is composite], and is a pronic number (A002378) when a(n) < a(n+1) [when n+1 is prime]. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = pi(n) * pi(n+1) = A000720(n) * A000720(n+1). EXAMPLE a(5) = 9; pi(5) * pi(6) = 3 * 3 = 9. a(6) = 12; pi(6) * pi(7) = 3 * 4 = 12. MAPLE with(numtheory): A256956:=n->pi(n)*pi(n+1): seq(A256956(n), n=1..100); MATHEMATICA Table[PrimePi[n]*PrimePi[n + 1], {n, 100}] PROG (PARI) vector(100, n, primepi(n)*primepi(n+1)) \\ Derek Orr, Apr 13 2015 (MAGMA) [ #PrimesUpTo(n) * #PrimesUpTo(n+1):  n in [1..80] ]; // Vincenzo Librandi, Apr 14 2015 (Scheme) (define (A256956 n) (* (A000720 n) (A000720 (+ 1 n)))) ;; Antti Karttunen, Apr 18 2015 CROSSREFS Cf. A000290, A000720, A002378. Sequence in context: A180107 A134678 A135146 * A257637 A258027 A053096 Adjacent sequences:  A256953 A256954 A256955 * A256957 A256958 A256959 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Apr 13 2015 EXTENSIONS Comment clarified by Antti Karttunen, Apr 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:05 EDT 2019. Contains 328335 sequences. (Running on oeis4.)